ÜBER DIE KRISTALL- UND MOLEKŪLSTRUKTUR UND DIE ABSOLUTE KONFIGURATION DES (+)-14-EPICORYNOLIN-BROMACETATS

N. TAKAO^{*},^a M. KAMIGAUCHI,^a K. Iwasa,^a K. Tomita,^b T. Fujiwara^b und A. Wakaharat^b

*Pharmazeutische Hochschule für Frauen zu Kobe, Motoyamakita-machi, Higashinada-ku, Kobe 658, Japan

^bPharmazeutische Fakultät der Universität Osaka, Yamada-kami, Suita-shi, Osaka 565, Japan

(Received in Germany 11 November 1977; Received in the UK for publication 16 June 1978)

Abstract—The crystal structure and absolute configuration of (+)-14-epicorynoline bromoacetate have been elucidated by X-ray diffraction method. The title compound forms monoclinic needles of space group P2₁, with a = 10.056, b = 7.400, c = 13.959 Å, $\beta = 94.09^\circ$, and two molecules in the unit cell. The structure was determined by the heavy-atom method and refined by the least-squares method to R = 0.082 for 1195 reflections collected by counter diffractometer techniques. Using the anomalous dispersion effect of the bromine atom, the absolute configuration was also determined as 11S, 13R and 14S. The mode of B/C-ring connection is *trans*; the rings B and C form half-chair and twist-half-chair conformations, respectively. The dihedral angle between the A- and D-rings is 11°. The hydroxyl-group at C-11 is *trans* to the methyl-group at C-13. The methyl-group at N-5 has an axial orientation and a 1,3-diaxial relationship to the angular methyl-group at C-13, which causes an unusual short distance of 3.11 Å between these methyl-groups.

EINLETUNG

(+)-14-Epicorynolin,¹ das aus *Corydalis incisa* (*Papaveraceen*) isoliert wurde, gehört zum Hydrobenzo(c)-phenanthridin-Alkaloid-Typ. Seine Struktur wurde durch chemische und spektroskopische Methoden aufgeklärt. Die dadurch bestätigte *trans*-B/C-Ringverknüpfung des (+)-14-Epicorynolins ist bemerkenswert, da alle bis jetzt bekannten und in der Natur vorkommenden Hydrobenzo(c)-phenanthridin-Alkaloide, z.B., (+)-Chelidonin,² (±)-Corynolin³ und (±)-Corynoloxin³ u.s.w., eine *cis*-B/C-Ringverknüpfung besitzen.

(+)-14-Epicorynolin-bromacetat (1) wurde dazu verwendet, um die Kristall- und Molekülstruktur des (+)-14-Epicorynolins mittels Röntgenstrukturanalyse zu bestimmen. Über das vorläufige Resultat wurde schon berichtet.⁴

Abb. 1. Struktur von 1.

EXPERIMENTELLES

Darstellung des (+)-14-Epicorynolin-bromacetats (1)

70 mg (+)-14-Epicorynolin wurden in 20 ml trockenem Chloroform gelöst und im Eisbad unter Zusatz von einigen Tropfen Pyridin mit 120 mg Bromessigsäurebromid versetzt. Das Gemisch wurde dann 3h unter Rückfluss erhitzt. Danach wurde dem Reaktionsgemisch eine kleine Menge Wasser zugesetzt und i. Vak. abdestilliert, wobei ein rotbrauner öliger Rückstand verblieb. Der Rückstand wurde mit 3-proz. Salzsäure mehrmals extrahiert. Die Salzsäure-Auszüge wurden mit konz. Ammoniak alkalisch gemacht und mit Ether ausgeschüttelt. Die Ether-Auszüge wurden mit Natriumsulfat getrocknet und der Ether abgedampft, wobei ein hellgelber Rückstand verblieb. Der Rückstand, (+)-14-Epicorynolin-bromacetat (1), wurde aus einem Lösungsmittelgemisch von Aceton, Methanol und Ether als 74 mg farblose, durchsichtige Nadeln vom Schmp. 188–189° erhalten. IR (CHCl₃): 1720 cm⁻¹ (C=O), ¹H NMR (CDCl₃) $\delta =$ 4.60 (1H, s, 14-H), 4.05 (1H, d, J = 17 Hz, 61-H), 4.31 (1H, d, J = 17 Hz, 62-H), 5.60 (1H, dd, J = 5, 1.5 Hz, 11-H), 2.85 (1H, dd, J = 19, 1.5 Hz, 121-H), 3.30 (1H, dd, J = 19, 5 Hz, 122-H), 6.63 (1H, s, 1-H), 7.25 (1H, s, 4-H), 6.77 (1H, d, J = 8.5 Hz, 9-H), 6.76 (1H, d, J = 8.5 Hz, 10-H), 2.55 (3H, s, N-Me), 1.20 (3H, s, C-Me), 5.95, 5.97 (2H, 2H, s, s, -OCH2O-), 3.53 (2H, s, COCH2Br). C23H22O6NBr (488.34) Gef.: C, 56.84; H, 4.32. Ber. C, 56.56; H, 4.55.

Kristalldaten

Orientierende Weissenberg- und Präzessions-aufnahmen dienten zur Bestimmung der Raumgruppe als P2₁ (aus den Auslöschungen; OkO für k = 2n + 1) und zur groben Bestimmung der Zellkonstanten. Die genaue Bestimmung erfolgte nach einem Ausgleichsverfahren mit den auf einem automatischen Vierkreisdiffraktometer exakt gemessenen 20-Werten von 9 Reflexen. Die Dichte (1.551 g/cm³) wurde nach der Schwebemethode in einer wässrigen Kaliumjodilösung bestimmt. Daraus folgt eine Besetzung der Elementarzellen mit je 2 Molekülen von 1. Die so bestimmten Kristalldaten sind in Tabelle 1 zusammengestellt.

Intensitätsmessung

Ein monokliner, in Richtung der b-Achse orientierter Kristall (ca. $0.1 \times 0.2 \times 0.3$ mm) wurde zur Messung der Diffraktionsmaxima auf einem automatischen Vierkreisdiffraktometer (Rigaku Denki A. G.) mit Ni-gefilterter Cu-K_a-Strahlung verwendet. Es wurden insgesamt 1055 unabhängige Reflexe nach dem " ω -2e-scan-Verfahren" erhalten, wobei die Reflexe, deren. Intensitäten schwächer als 3σ (σ = berechnete Standardab-

[†]Ncue Anschrift; Research Laboratories, Fujisawa pharmaceutical Co. Ltd., Kashima, Yodogawa-ku, Osaka, Japan.

Tabelle 1. Kristallographische Daten von 1

C₂₃H₂₂O₄NBr, M.G. 488.34, Schmp. 188 - 189° Farblose, durchsichtige Nadeln, Monoklin a = 10.056 (6), b = 7.400 (6), c = 13.959 (6) Å β = 94.09° (3) V = 1036.1 Å³, Z = 2, F(000) = 500 μ (für Cu-Ka) = 32.58 cm³ D_{gef.} = 1.551 g/cm³, D_{ber.} = 1.565 g/cm³ Auslöschungen; (0k0) für k = 2n+1 Raumgruppe; P2₁

weichung) waren, als nicht beobachtet angesehen wurden (vermessener Bereich: sin $\theta/\lambda < 0.50$ Å⁻¹). Die Intensitäten von 3 Standardreflexen, die nach jeweils 25 Reflexen erneut gemessen wurden, wiesen keine Absahme auf. Die Lorentz- und Polarisations-korrekturen wurden wie üblich durchgeführt, jedoch wurden keine Absorptionskorrekturen vorgenommen. Die Messdaten wurden nach dem Wilson-Verfahren auf absolute Werte gebracht, wobei ein Temperaturfaktor 5.92 Å² verwendet wurde.

Strukturbestimmung und Verfeinerung

Die Struktur konnte nach der Schweratommethode bestimmt werden. Aus der Ermittlung von Maxima der zugespitzten Patterson-Funktion wurden die Koordinaten des Bromatoms bestimmt. Die Y-Koordinate wurde willkürlich 0.1 gesetzt und während der Analyse konstant gehalten. Die Parameter aller Nicht-Wasserstoffatome ergaben sich aus sukzessiven Fouriersynthesen, die aus der durch die Bromatomlage bestimmten Phase berechnet wurden. Der R-Wert, SIFo - FcI/SFo, wurde mit konstantem temperaturfaktor auf 0.188 abgesenkt. Die Verfeinerung der Struktur führten wir für alle Reflexe mit der Methode der kleinsten Quadrate in der Blockdiagonalnäherung durch. Der R-Wert wurde mit isotropen thermischen Parametern für alle Nicht-Wasserstoffatome des Moleküls auf 0.126 erniedrigt und durch fünf weitere Zyklen mit anisotropen Temperaturfaktoren auf 0.097 gebracht. Durch eine anschliessende Differenz-Fouriersynthese konnte die Lage von allen zweiundzwanzig Wasserstoffatomen, einschliesslich der sechs Wasserstoffatome zweier Methylgruppen, eindeutig bestimmt werden. Nach der Einführung isotroper Temperaturparameter für das Wasserstoffatom und der Verfeinerung mit der Kleinste-Quadrate-Rechnung konnte ein R-Wert von 0.082 erreicht werden. Tabelle 2 enthält die beobachteten und die aus der letzten Verfeinerung berechneten Strukturfaktoren. In der Tabelle 3 sind die Positionsparameter, die Temperaturparameter und ihre berechneten Standardabweichungen zusammengestellt. Alle Berechnungen wurden unter Verwendung eines NEAC-2200-700-Computers des Rechenzentrums der Universität Osaka mit dem UNICS-System-Programm durchgeführt.

Absolute Konfiguration

Die Bestimmung der absoluten Konfiguration konnte unter Berücksichtigung des anomalen Dispersionseffekts des Bromatoms ermittelt werden. Die Strukturfaktoren der Bijvoet-Paare, F(hkl) und F(hkl), wurden mit Hilfe der Dispersionskorrekturen Af und Af des Bromatoms auf der Grundlage des im rechthändigen Koordinatenaystems vorliegenden Modells berechnet. Die Intensitäten, I(hkl) und I(hkl), aus den Oazillationsaufnahmen um die b-Achse wurden direkt visuell verglichen. Wie in Tabelle 4 gezeigt wird, zeigen die verschiedenen Intensitäten der 15 Bijvoet-Paare, dass die nach dem rechthändigen System provisorisch bestimmte Konfiguration richtig ist. Dadurch wird die absolute Konfiguration von 1 als 11S, 13R und 14S eindeutig gesichert.

RESULTATE UND DESKUSSION

Molekulare Dimensionen

Die Bindungslängen und bindungswinkel sind mit der Numierung der Atome in Abbs. 2 und 3 angegeben. In Abb. 2 werden alle Nicht-Wasserstoffatome auf die Ebene des A-Rings und in Abb. 3 auf die Ebene des D-Rings projiziert. Die Standardabweichungen der bindungslängen betragen 0.03 Å, die der bindungswinkel 2°.

Die meisten interatomaren Abstände und Winkel in der Skelettsstruktur stimmen gut mit den für (\pm) -Corynolin*p*-brombenzoat³ gefundenen Werten überein. Ausserordentliche Abweichungen zeigen die Bindungsabstände C(21)-C(13) (1.61 Å) und N(5)-C(22) (1.53 Å), die länger als die im (\pm) -Corynolin-*p*-brombenzoat gefundenen Werte (1.54 Å und 1.45 Å) sind. Diese Unterschiede könnten auf die 1,3-diaxialen Wechselwirkungen von zwei Methylgruppen (C(21)----C(22), 3.11 Å) zurückzuführen sein. Der Mittelwert der drei C-N(5)-C Bindungswinkel (112°) weist auf einen sp³-hybridisierten Stickstoff hin. Eine kleine Abweichung ist jedoch am Winkel C(14)-N(5)-C(22) (116°) aufgrund des obigen Effektes zu erkennen.

die Hydrobenzo-(c)-phenanthridin-Alkaloide Was betrifft, so kann die Stereostruktur des Moleküls durch zwei Ebenen, die den A-Ring und D-Ring enthalten, beschrieben werden. Die Gleichungen der Kleinste-Quadrate-Ebene sind für den A-Ring: 0.2873 X-0.0448 Y + 0.9568 Z = 5.3563, und für den D-Ring: 0.3885 X - 0.1873 Y + 0.9022 Z = 5.3372 (in Å⁻³). Die Ebene des A-Rings bildet mit der Ebene des D-Rings einen Diederwinkel von 11°. Dieser Winkel ist deutlich verschieden vom Wert für (±)-Corynolin-p-brombenzoat 73.2°, was auf den Unterschied in der B/C-Ringverknüpfungsweise zurückzuführen sein sollte. Die Abweichungen der einzelnen Atome aus den Ebenen des A-Rings und D-Rings sind in Tabelle 5 dargestellt.

Es ist ersichtlich, dass sechs Kohlenstoffatome und zwei Sauerstoffatome (O(1) und O(2)) des A-Rings in-

Abb. 2. Bindungsabstände (Å) in 1.

Tabelle 2. Beobachtete und berechnete Strukturfaktoren für 1

ĸ	PO	PC	ĸ	FO	PC	ĸ	FO	FC	K	FO	FC	K	FO	FC
H.L.	ō	Ō	3	94	92	H.L=	2	7	H.L=	4	0	1	48	61
	205	202		190	169		364	373	0	110	143	ō	91	103
-	164	100		100	100	ň	242	375	ĭ	166	127	2	22	29
2	124	120	2	24	47	1	444	443	-	261	721	3	22	20
	10	24		30	40	2	30	~ ~ ~	4	494 494	43/		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20
H, L=	0	1	H,L=	1	4	3	41	37	3	72	63	H,L=	5	
0	191	228	0	582	569	- 4	19	14	- 4	83	83	0	36	47
1	340	340	1	194	187	5	90	91	5	31	30	1	41	53
2	233	256	2	109	102	H,L=	2	8	6	65	62	2	66	77
3	94	88	3	53	51	0	98	101	$H_{L} =$	4	1	3	60	73
Ā	181	186	Ă	138	128	ĩ	36	30	Ő	220	204	Ā	38	47
ġ	-60	61	È	100	109	2	74	70	ĩ	120	120	Š	23	29
š	0.5	00	č	100	44	5	111	06	5	120	122	u 1-	Ē	- 6
	33	30		24		2	111	70	4	120	122	п, Ц-	~ ~	
	19	18		37	37	4	44	4/	5	10	13	U.	68	83
H,L=	0	2	H,L=	1	5	5	51	52	4	88	84	1	- 22	80
0	217	214	0	373	364	H,L=	2	9	5	55	50	2	47	62
1	233	223	1	126	121	0	47	39	6	55	49	4	18	35
2	211	216	2	173	162	1	101	103	H.L=	4	2	H,L=	5	9
3	19	32	3	51	43	2	72	70	0	103	99	1	56	74
Ă	109	106	Ā	102	97		66	56	ĩ	159	147	2	36	Å 1
È	110	112		96	76		45	26		166	164		Ē	10
5	112	112		00	15		43	20	2	103	104	п, Б- 1	40	40
	41	14	n,L=				60	00	3	01	63	1		40
7	45	47	0	155	156	H,L=	2	10	4	42	44	5	19	22
H,L=	0	3	1	35	43	0	138	128	5	51	47	H,L=	5	- 11
0	189	207	2	152	143	1	22	23	6	48	- 44	1	25	32
1	257	259	3	50	51	2	78	67	H.L=	4	3	$H_{L} =$	6	0
2	45	48	4	93	82	3	51	54	0	30	31	Ō	220	200
3	146	140	Ś	6.8	70	Ĩ	35	22	1	168	160	ĩ	74	76
Ā	121	126	ž	24	20	W T -	22	ñí	5	91	70	2	50	54
	27	24	U T		20	n,u-		22	5	160	162	5	53	51
5	3/	34	п, ьч			I I		33	3	100	122	3	21	27
<u>0</u>	12	68	Ū	197	187	2	22	24	4	23	52	4	22	22
7	48	44	1	138	138	4	35	27	5	63	62	5	49	48
H,L=	0	4	2	139	130	H,L=	2	12	H,L=	- 4	- 4	H,L=	6	1
0	262	252	3	89	78	0	71	67	0	63	58	0	85	83
1	218	218	4	33	19	1	65	75	1	137	132	1	112	105
2	101	93	5	46	41	2	36	36	2	35	34	2	79	72
ž	229	215	ē.	20	29	- H T	2	12	2	169	167		124	116
Ā	43	20	и т_	1	Ś	,2-	< <u>-</u>	67	4	55	64	Ă	10	21
		37	п, <u>ь</u> -			v v	22	22		22	74		73	21
2		30	v.	83	/0		23	23	2	/3	/8	H,L=		
0	110	100	1	27	18	H,L=	3	0	6	21	21	0	152	143
7	31	32	2	139	128	0	106	103	H,L=	4	5	1	76	74
H,L=	0	5	3	41	37	1	284	279	0	56	56	2	73	- 74
0	232	233	4	26	25	2	99	92	1	127	126	3	56	52
1	145	156	5	40	43	3	206	204	2	36	30	4	43	41
2	97	98	H.L=	1	ġ	4	49	48	3	125	122	5	36	31
3	145	143	0	251	211	Ś	60	69	Ā	43	47	H.L=	6	3
	21	26	ĩ	63	45	č	17	20	č	51	55	,	76	60
Ē	120	116	5	50	53	2	20	20	2	20	20	ň	20	22
2	140	01	-	33	22		20	23	u t_	30	30	1	30	22
D		01	-	71	00	п,L=	2	_	п, ь =		0	4	04	07
8,6=	0		>	50	52	0	68	- 54	0	- 22	21	5	84	82
0	93	95	H,L=	1	10	. 1	327	316	1	84	87	4	24	30
1	232	241	0	58	54	2	90	90	2	77	84	5	41	36
2	27	29	1	95	87	3	181	178	3	91	91	H,L=	6	- 4
3	113	112	2	50	45	4	75	73	4	47	42	0	109	110
4	122	118	3	71	64	5	79	77	5	25	25	1	152	152
5	86	81	Ā	52	56	ň	56	46	H.I.=			2	53	49
Ă	29	27	ŝ	30	21	7	22	21	,2-	00	90		94	20
и т_	- 2		ч т_	30	11	· · · -		<u></u>	Ň	101	112	J J _	6 N N	00 E
n, <u>u</u> -			п,ь-		11	=	1 2 2	1 2 2	-	101	112	n,5=		105
, ,	147	1 2 2	, ,	~~	28	U,	120	123	4	5/	50	Ų,	70	102
Ť	142	127	Ť	/5	63	1	200	1/3	5	47	51	Ţ	TOA	122
2	, 33	30	2	- 44	41	2	206	189	4	70	68	2	16	22
3	167	155	3	52	48	3	143	138	H,L=	_ 4	8	3	31	29
4	19	15	4	21	27	4	36	31	0	- 74	76	5	38	40
5	56	50	H,L=	1	12	5	19	17	1	60	54	H,L=	6	6
6	40	38	0	27	26	6	38	32	2	57	56	0	22	25
H,L=	0	8	1	45	51	H,L=	3	3	3	39	40	1	66	83
1	162	154	2	27	28	0	124	113	4	33	31	3	45	54
2	70	62	3	36	31	ī	33	35	5	31	23	H.L=	6	7
			-			-			-			, _	-	•

Tabelle 2. (Fortsetzung)

K	FO	FC	K	FO	FC	K	FO	FC	K	FO	PC	ĸ	FO	PC
3	106	103	H,L=	1	13	2	145	128	H,L=	4	9	1	49	66
4	90	84	1	35	36	3	43	36	0	55	52	2	40	45
5	29	23	2	20	28	4	86	77	1	60	67	3	60	67
6	26	27	H,L=	2	0	5	30	40	2	29	33	H,L=	6	8
H,L=	0	9	1	131	123	6	55	50	3	41	46	0	55	70
1	87	73	2	140	154	H,L=	3	4	4	44	39	1	35	30
2	114	107	3	255	236	0	258	251	H,L=	- 4	10	2	27	32
3	29	30	4	92	93	1	19	19	0	99	113	3	30	38
4	63	64	5	77	70	2	160	150	1	57	59	H,L=	6	9
. 5	41	41	6	83	80	3	153	142	2	39	39	0	20	19
H,L=	0	10	H,L=	2	1	4	77	71	3	27	29	2	43	58
0	29	25	0	221	216	5	49	48	H,L=	- 4	11	H,L=	7	0
1	45	37	1	312	300	6	65	61	0	18	20	0	52	45
2	80	74	· 2	188	184	H,L=	3	5	2	35	48	1	55	45
3	56	49	3	144	130	0	300	287	H,L=	4	12	2	66	63
4	30	26	4	121	115	1	123	116	0	31	47	3	87	87
. 5	- 24	14	5	104	98	2	179	167	H,L=	5	0	4	72	66
н,ц=		11	6	120	115	3	110	101	0	169	145	5	30	35
0	118	104	. 7	- 54	49	4	77	76	1	174	156	H,L=	7	1
Ţ	63	57	H,L=	2	2	5	25	25	2	59	54	0	86	79
2	53	4q	0	13	28	6	47	44	3	160	157	1	113	106
5	46	51	1	285	258	H,L=	3	6	4	23	18	2	67	60
4	26	22	2	194	179	0	186	197	5	37	35	3	77	76
H,L=	0	12	3	57	57	1	83	75	6	32	34	4	96	88
0	50	49	4	184	177	2	112	105	H,L=	5	1	5	28	24
2	93	79	5	63	59	3	61	58	0	78	80	H,L=	7	2
	40	50	6	67	63	4	122	118	1	105	92	0	103	97
H,L=	0	13	. 7	44	38	. 5	22	26	2	144	128	1	79	75
Ů,	31	20	H,L=	2	3	H,L=	3	7	3	98	96	2	100	92
1	25	26	0	565	532	0	193	193	4	50	48	3	22	22
. 2	61	51	1	159	147	1	37	43	5	72	77	5	47	47
H,L=	1	0	2	167	154	2	83	74	H, L=	5	2	H,L=	7	3
0	173	155	3	102	91	3	39	40	0	189	180	0	98	89
1	261	268	4	70	58	4	72	69	1	81	83	1	53	59
2	223	209	5	31	31	5	27	25	2	120	119	2	62	59
3	166	174	6	76	72	H,L=	3	8	3	27	36	3	19	9
4	61	62	7	22	21	0	69	53	4	111	106	4	20	27
5	37	40	H,L=	2	4	1	67	69	5	60	54	H, L=	7	4
6	65	57	0	88	92	2	79	75	6	23	21	0	109	114
H,L=	1	1	1	175	167	3	101	109	₽,L=	5	3	1	39	49
0	12	21	2	147	137	4	46	47	0	154	158	2	59	62
I	197	175	3	73	68	5	31	36	1	86	89	4	41	38
2	208	195	5	31	30	H,L=	3	9	2	167	162	H,L=	7	5
3	188	181	6	67	63	0	73	70	3	52	55	0	50	54
4	50	49	H,L=	2	5	1	96	96	4	63	63	1	49	57
2	/1	71	0	268	255	2	58	58	. 6	- 34	30	2	80	8/
	/5	00	1	181	16/		70	66	н,∟=	5	4	2	38	37
п,Ц=	1		2	44	44	4	39	28	Ŭ,	04	94		41	41
0	180	167	5	1/0	162		41	38	1	/3	80	н,ь=	~ ~	ь
1	415	3/5	4	22	22	H, L=		10	2	118	113	Ŭ	20	30
2	227	202	5	90	85	1	111	124	3	23	24	2	71	72
3	232	210	6	- 34	26	2	60	68	4	68	75	H,L=	7	7
4	139	118	H,L=	2	6	. 3	53	50	H,L=			0	85	107
2	58		Ū,	26	21	H,L=	3	11	0 N	113	125	1	29	36
5	57	60	1	385	373	1	42	42	Ĩ	32	31	2	19	- 34
	18	20	4	63	01	2	37	30	4	/0	6/	3	22	02
a,L=		967	3	83	29	J J	42	12			42	n,L≖ 1	20	51
Ň	602	67/ 57/		30	30	n, L-	57	72	- 14 . T.=	40 K	40	H T.=	33	51
2	122	110	у К	41	40	ĭ	50	49		77	84		7▲	74
* 1		**7	-	10	14	-	20	10				-		
1 2	21	20	,)	73	10	5	04	02		23	19	3	52	34
2	31	27	л,L= ^	-1	10	ь ц +	36	59	H,L=	-4	13	4	46	46
	40	52	U 1	17	4 6 6 6	n,b= ^		2	. V	34	28	n,L=	-0	у
ч Н.Т.=	20	J 2 1	2	76	00 94	2	32 116	114	1 1 -	4/ _E	44	ů,	43 47	54
	51	42	2	/ J 6 8	£0	2	51	110 70	n,L= ^	217	210	- 1	40	40
ĭ	30	31	J H.T.=	_1	11		70	77	ů 1	41/ 57	E 4	2	4U 6A	44
-		71	· · · · · · · · · · · · · · · · · · ·	-1	**	-	/0	16	1	31	24	3	20	74

Über die Kristall- und Molekülstruktur

Tabelle 2. (Fortsetzung)

K	FO	FC	K	FO	FC	ĸ	FO	FC	ĸ	FO	FC	K	FO	FC
2	50	52	0	34	44	6	44	44	2	43	51	H,L=	-6	10
3	64	61	1	36	40	H,L=	- 3	6	3	92	104	0	44	44
4	37	43	3	39	36	Ó	143	154	4	25	27	1	45	30
H,L=	8	2	4	17	17	1	39	27	5	62	70	2	- 44	55
0	66	68	H,L≃	-1	12	2	146	146	6	24	14	3	52	47
1	95	87	0	18	20	3	25	40	H,L=	-5	2	H,L=	-6	11
2	49	39	1	34	40	4	60	56	0	165	159	0.	28	23
3	40	42	2	21	25	6	28	19	1	206	208	2	36	29
4	41	42	3	48	47	H,L=	-3	7	2	65	73	H,L=	-7	1
H, L=	8	3	H,L=	-1	13	0	122	128	3	116	123	1	97	96
2	03	69	L U T	40	46	1	39	57		34	3/	2	54	53
2	21	10	n,L=	-2	L C	2	11/	103		23	21	2	30	102
د ۸	40	4	2	10	201	3	28	13	n,L≖ ^	-5	242	4 11 T -	- 7 3	22
H.T.m.	90	4	2	167	170	2	22	30	1	150	145	n, L-	40	45
,5-	24	27	, j	95	111	H.L.m.	- 3	30	2	70	71	ĩ	104	104
ĩ	31	32	5	33	43	,0-	174	186	3	45	49	2	58	62
2	31	24	6	19	23	i	82	90	5	29	31	3	30	33
3	107	115	H,L=	-2	2	2	84	78	6	44	44	4	41	47
H,L=	8	5	0	336	375	3	28	29	H,L=	-5	4	5	44	51
1	65	71	1	241	247	4	- 44	40	0	154	158	H,L=	-7	3
2	- 44	43	2	246	268	5	34	32	1	122	110	0	16	11
3	31	36	3	197	199	H,L=	-3	9	2	39	37	1	45	50
H,L=	8	6	4	98	102	0	90	97	3	20	16	2	28	36
0	33	34	6	35	39	1	34	39	4	29	33	3	73	72
I	25	32	H,L=	-2		2	69	67	5	67	75	5	61	62
4	32	31	0	132	170	3	17	25	6	48	57	H,L=	-7	4
n,L=	22	24	2	130	224	4	28	20	n,L=	210	200	0		67
ĭ	23	59	2	161	167	и т.=	-3	10	1	162	120	2	79	75
H.L.=	Ĩ	0	Å	63	107	1,10-	- J 45	50	2	133	137	2	127	121
1	73	65	5	49	56	3	23	15	1	88	92	5	22	22
2	30	22	6	23	31	4	44	35	Ă	83	87	H.L=	-7	
3	71	72	H,L=	-2	4	H.L=	-3	11	5	34	31	1	8i	72
H, L=	9	1	0	351	386	0	28	30	H,L=	-5	6	2	110	103
0	47	34	1	117	117	1	47	51	0	106	108	3	100	99
1	26	19	2	31	36	2	34	46	1	62	60	H,L=	-7	6
2	64	58	3	121	117	3	20	- 25	2	84	77	0	27	15
3	52	55	4	56	54	4	26	19	3	45	39	1	61	52
H,L=	9	2	5	67	73	H,L=	-3	12	4	97	100	2	130	116
4	61	61	6	17	15	1	72	94	. 5	60	60	3	30	31
п, L=	47	5	H,L=	166	102	3	30	23	H,L=	-5	7		29	24
ĩ	22	27	ů 1	140	140	п,L= о	- 5	13	U 1	23	1/	н,ь=	-/	
2	22	27	2	120	112	и т_	-4	21	2	28	50	2	80 53	/3
H.L=	Ğ	4	า้	147	147	n,L- 0	255	272	2	21	24	2	33	44
0	65	64	Ă	45	42	ĭ	73	82	Ă	79	69	J A	59	40
2	28	28	5	42	45	2	112	129	5	30	34	H.L=	-7	8
H,L=	9	5	6	38	43	3	24	24	H,L=	-5	8	0	74	56
0	57	68	H,L=	-2	6	4	67	82	0	18	15	2	49	44
H,L=	10	0	0	16	11	5	39	39	1	51	49	3	36	35
0	41	35	1	137	145	6	59	63	2	66	55	H,L=	-7	9
H, L=	-1	1	2	76	75	H,L=	-4	2	3	40	35	0	94	80
1	268	299	3	129	129	0	135	147	4	26	32	2	27	25
2	60	67	4	35	33	1	92	86	5	25	26	H,L=	-7	10
5	406	432	5	50	45	2	132	151	H,L=	-5	.9	0	17	14
4 E	202 703	1/4	п, b= ^	+2 1E	/ 21	5	/9	/8	0	52	45	H,L=	-8	1
6	61	55	1	122	122	4	47	<i>J C</i> DT	7	48	27	0	61 47	62
ž	74	83	2	18	13	6	36	33	2	21	47 29	2	03 43	104
H,L=	-1	2	3	125	123	H.L=	-4	Ĵ	4	67	66	ž	7∡	- 92
0	60	69	4	21	20	0	83	67	H,L=	-5	ĩõ	H.L=	-8	2
1	487	503	6	17	8	1	264	257	Ō	50	45	1	37	39
2	99	95	H,L=	-2	8	2	170	187	1	23	16	2	74	78
3	42	33	0	52	67	3	33	40	2	87	79	3	74	84
4	62	58	1	85	87	• 4	61	64	3	35	28	5	30	33
2	120	164	2	36	37	6	39	39	H,L=	-5	11	H,L=	- 8	3

N. TAKAO et al.

K	PO	FC	K	FO	FC	ĸ	FO	FC	K	FO	FC	K	FO	FC
6	92	96	3	57	51	H,L=	-4	4	0	39	46	0	77	68
7	45	51	H,L=	- 2	9	0	86	86	1	51	61	1	26	- 31
H,L=	-1	3	0	68	83	1	34	31	2	57	49	2	87	90
0	76	101	1	53	54	2	82	90	3	42	34	3	63	68
1	256	258	2	40	42	3	99	93	H,L=	-5	12	H,L=	-8	- 4
2	131	143	3	88	93	4	65	67	0	52	62	0	42	30
3	194	193	H, L=	-2	10	5	24	30	1	33	27	1	99	85
4	81	73	0	51	65	6	40	36	H, L=	-6	1	2	47	35
5	102	95	1	53	64	H,L=	-4	5	0	168	177	4	40	32
6	71	72	2	38	39	0	218	220	1	31	25	H,L=	- 8	5
. 7	22	23	3	41	47	1	144	141	2	82	95	<u>o</u>	95	- 84
H,L=	-1	4	4	39	43	2	170	162	3	24	24	1	21	13
0	276	325	5	33	33	3	56	54	4	34	41	2	43	29
1	158	174	H,L=	- 2	11	4	40	45	5	21	28	3	31	33
2	130	128	0	25	30		19	23	H,L=	-6	2	H, L=	-8	6
3	149	148	1	51	63	H, L=	-4	6	0	186	194	0	74	67
4	119	118	2	29	25	0 V	19	24	1	34	41	1	53	40
2	1/	12	5	24	1/	1	12/	112	2	135	140		21	23
0 U T_	4.5	4/		3/	40	4	87	80	5	43	40	н,ц=	-8	~ ~ /
п,L= 0	105	222	H,L=	-2	12	5	30	20	4	113	133	1	21	24
U 1	111	233	2	10	38	1	20	20	н,⊔=	-0	20	2	21	20
2	256	269	2	22	27	5	27	27	ň	47	40	ы 11 т –	_9	49
2	230	200	2	23	27	ит <u>-</u>	-4		2	77	40	n,u=	27	45
	77	23	ы ы т –		33	n, D-	26	45	2	70	07	Ň	51	
č	20	34	n,D-	- 5	25	ĩ	50	45	3	126	120	2	26	21
š	30	30	ĭ	304	334	2	42	20	ит-	-6	130	¥ 1.=	-9	
и т.=	-1	50	2	68	67	2	66	54	n,u-	29	22	n,L-	24	10
., <u>D</u> -	85	112	2	41	62	Š	62	61	1	49	50	ĩ	62	40
ĭ	47	67	Ă	61	59	H.L.	-4	ŝ	2	99	78	н Г.=	-9	ĩ
2	185	194	5	40	52	1	125	128	2	95	<u>6</u> 0		26	27
3	127	129	6	20	14	3	61	57	4	84	89	ĭ	49	49
Ā	106	107	7	27	39	Ă	20	21	ŝ	26	20	2	1.0	15
6	42	41	H.L=	-3	2	5	56	52	H.L.	-6	Š	3	35	37
H.L.	-1	7		57	54	н.t.=	-4	9	···/2=	102	95	H.I.=	_9_	2
0	88	116	ĭ	179	187	,2=	41	51	2	30	26	,2-	75	80
ĩ	48	50	2	78	85	ī	66	71	3	19	18	ĩ	69	69
2	75	91	3	122	127	2	36	37	4	54	59	H.L=	-9	3
3	45	38	4	69	74	3	76	70	Ś	46	43	1	55	47
4	79	87	5	87	100	4	48	60	H.L=	-6	6	2	28	26
6	26	27	6	19	18	5	49	42	0	54	52	3	22	16
H,L=	-1	8	H, L=	-3	3	H,L=	-4	10	ī	55	52	H.L=	-9	4
0	71	98	0	36	31	1	32	31	2	53	52	0	19	24
1	51	58	1	180	200	2	28	14	3	91	83	2	20	20
2	59	64	2	59	74	4	37	33	Ă	37	34	$H_{L}=$	-9	5
3	17	17	3	206	219	H, L=	-4	11	Ś	50	49	ī	64	60
4	90	99	4	80	80	0	24	16	H,L=	-6	7	2	38	29
6	42	47	6	40	47	1	21	17	1	136	121	H,L=	-9	6
H, L=	-1	9	H, L=	- 3	4	2	31	26	2	123	118	Ō	89	74
1	54	62	1	97	107	3	35	26	3	59	50	1	32	23
2	95	109	2	167	170	H, L=	-4	12	H,L=	-6	8	H,L=	-10	2
3	69	79	3	96	99	0	46	37	1	107	92	Ō	51	57
4	44	37	4	54	51	1	35	41	2	110	105			
									_					-

nerhalb des experimentellen Fehlers in der Ebene des A-Rings liegen. Die Kohlenstoffatome (C(13) und C(19)) weichen nur wenig von der Ebene des A-Rings ab. Das gleiche gilt auch für den D-Ring.

Konfiguration und Konformation

Im Kristall besitzt 1 eine trans-B/C-Verknüpfung; die alkoholische Hydroxylgruppe am C-11 steht trans zu der Methylgruppe am C-13. Die N-Methylgruppe steht axial. Der B-Ring nimmt eine Halbsessel-, der C-Ring eine getwistete Halbsessel-Konformation ein. In Abb. 4 sind die Konformationen des B- und C-Rings angegeben. Die Kopplungskonstanten ($J_{H(11)-H(121)} = 1.5$ und $J_{H(11)-H(122)} =$ 5.0 Hz) im ¹H NMR-Spektrum zeigen, dass der C-Ring in Lösung wie im Kristall eine getwistete Halbsessel-Konformation einnimmt. Was die Richtung der N-Methylgruppe anbetrifft, so zeigt (±)-Corynolin, das eine äquatoriale N-Methylgruppe besitzt, im IR-Spektrum (CHCl₃) charakteristische Bohlmann-Banden zwischen 2650–2850 cm⁻¹, ⁶ 1 zeigt jedoch nur schwache Banden bei 2750 cm⁻¹ und 2800 cm⁻¹, die nicht der Bohlmann-Bande

B ah	
(+ - 	
E + B	
Budd	
+_1°4	
1 ² +1	
+ B ₂₂	
B ₁₁ b ²	
Ľ,	
T = C)	
Ę	
der F	
E.	
amet	
n par	
perat	
Tem	
ž	
ichun	
abwe	
dard	
t Star	ļ
cr Di	
amet	
灵	-
E	
peratury	
l Temperatury	
ir und Temperatury	
ameter und Temperatury	
usparameter und Temperatury	
sitionsparameter und Temperatury	
3. Positionsparameter und Temperatury	
belle 3. Positionsparameter und Temperatury	

Atom	x	Х	2	B ₁₁	B22	B ₃₃	8 ₁₂	B ₁₃	^B 23
Br	0.2627(3)	(1)6660.0	0.0391(2)	0.0179(3)	0.0394(8)	0.0097(2)	0.0125(12)	-0.0028(4)	-0.0017 (9)
N (5)	0.5531(15)	0.3891(22)	0.3182(11)	0.0106(20)	0.0141(36)	0.0059(11)	-0.0001(47)	0.0025(23)	-0.0009 (35)
010	0.0461(12)	0.0197(22)	0.4045(10)	0.0087(15)	0.0288(43)	0.0095(11)	-0.0064(43)	0.0043(21)	0.0018(36)
0(2)	0.1438(12)	0.2948(23)	0.3876(11)	0.0072(15)	0.0267(39)	0.0102(11)	-0.0022(44)	0.0021(21)	0.0022(38)
0(3)	1.1066(14)	0.3907(24)	0.1290(12)	0.0126(19)	0.0275(43)	0.0114(13)	-0.0054(49)	0.0094(25)	0.0009(42)
(*)0	(11)6166.0	0.6244(24)	0.1932(11)	0.0089(14)	0.0180(32)	0.0132(12)	-0.0008(47)	0.0057(22)	0.0012(44)
0(5)	0.5319(14)	-0.0348(19)	0.1315(10)	0.0158(20)	0.0142(32)	0.0071(10)	-0.0040(45)	0.0010(22)	-0.0028(30)
0(6)	0.4448(16)	-0.3190(19)	0.1224(11)	0.0213(23)	0.0137(33)	0.0086(11)	-0.0115(47)	-0.0076 (26)	0.0014(31)
C(1)	0.9363(20)	0.1525(38)	0.1568(16)	0.0117(25)	0.0316(81)	0.0086(16)	0.0034(77)	0.0023 (32)	-0.0037(59)
C (2)	0.9826(20)	0.3386(33)	0.1596(15)	0.0109(25)	0.0252(62)	0.0066(14)	-0.0004(70)	0.0019(31)	0.0083(53)
C(3)	0.9164(20)	0.4697(27)	0.1989(15)	0.0116(25)	0.0117(44)	0.0079(15)	0.0081(60)	-0.0048(32)	-0.0040(45)
E)	0.7964(17)	0.4501(27)	0.2342(14)	0.0064(20)	0.0155(46)	0.0065(13)	0.0062(53)	-0.0033(27)	0.0014(41)
C (6)	0.4066(19)	0.3774(30)	0.3231(16)	0.0076(22)	0.0187(51)	0.0097(17)	0.0022(60)	0.0031(31)	-0.0039(53)
C(7)	0.2316(16)	0.1611(28)	0.3628(12)	0.0078(20)	0.0225(63)	0.0048(11)	0.0112(57)	0.0004(24)	-0.0021(42)
C (8)	0.1738(19)	-0.0003(30)	0.3733(13)	0.0126(25)	0.0188(48)	0.0046(12)	-0.0035(63)	-0.0015(28)	0.0029(43)
C (9)	0.2376(20)	-0.1544(33)	0.3540(14)	0.0124(27)	0.0253(61)	0.0057(13)	-0.0160(71)	0.0008(30)	0.0022(50)
C(10)	0.3692(20)	-0.1386(28)	0.3253(14)	0.0116(26)	0.0121(44)	0.0072(14)	-0.0072(60)	-0.0021(31)	0.0036(45)
c(11)	0.6150(20)	-0.0828(30)	0.2187(15)	0.0127(27)	0.0194(55)	0.0060(13)	0.0102(64)	0.0028(31)	0.0029(44)
C(12)	0.7575(18)	-0.0636(32)	0.1911(16)	0.0065(21)	0.0237(58)	0.0094(17)	-0.0021(61)	0.0048(30)	-0.0058(53)
C(13)	0.5735(17)	0.0464(24)	0.2949(11)	0.0126(23)	0.0146(47)	0.0016(9)	0.0081(53)	0.0002(23)	0.0031(32)
C(14)	0.6006(16)	0.2430(28)	0.2604(11)	0.0073(20)	0.0223 (52)	0.0030(10)	0.0032(54)	0.0067(23)	0.0033(39)
C(15)	0.8085(17)	0.1326(34)	0.1936(13)	0.0087(20)	0.0204(51)	0.0059(12)	0.0018(63)	-0.0004(25)	-0.0032(48)
C(16)	0.7396(17)	0.2716(26)	0.2314(12)	0.0090(22)	0.0147(44)	0.0045(11)	0.0037(53)	0.0048(25)	0.0014(38)
c(1))	0.4279(18)	0.0311(27)	0.3172(13)	0.0110(23)	0.0176(50)	0.0044(12)	0.0013(55)	-0.0023(27)	0.0047 (39)
C(18)	0.3546(17)	0.1918(28)	0.3374(13)	0.0077(20)	0.0200(48)	0.0047(11)	0.0018(55)	-0.0001(24)	0.0029(41)
(61) C(19)	0.0327(20)	0.2114(38)	0.4252(17)	0.0086(24)	0.0355(72)	0.0098(18)	0.0021(74)	0.0052(33)	0.0041(65)
C (20)	1.0991(18)	0.5818(38)	0.1396(15)	0.0107(24)	0.0246(62)	0.0095(16)	-0.0105(76)	0.0082(31)	0.0039(64)
C (21)	0.6665(20)	-0.0037(32)	0.3899(13)	0.0136(27)	0.0222(52)	0.0046(12)	-0.0015(67)	-0.0036(29)	0.0091(45)
C (22)	0.6180(23)	0.4064(36)	0.4200(15)	0.0157(31)	0.0309 (69)	0.0050(13)	-0.0008(80)	0.0006(32)	-0.0022(50)
C (23)	0.4538(21)	-0.1736(34)	0.0902(16)	0.0120(28)	0.0238(60)	0.0089(17)	0.0072(73)	0.0045(35)	-0.0086(58)
C(24)	0.3759(22)	-0.0944(38)	-0.0015(15)	0.0129(28)	0.0373(77)	0.0062(15)	-0.0099(80)	0.0061(32)	-0.0116(57)

Atom	x	¥	2	B(Å ¹)
C(19)-H(191)	0.025	0.210	0.494	6.9
C(19)-H(192)	-0.045	0.236	0.409	4.9
C(9)-H(9)	0.195	-0.260	0.364	6.2
C(10)-H(10)	0.411	-0.251	0.298	5.1
C(11)-H(11)	0.586	-0.210	0.250	5.8
C(12)-H(121)	0.764	-0.124	0.114	3.7
C(12)-H(122)	0.805	-0.136	0.241	4.9
C(1)-H(1)	1.000	0.051	0.118	8.8
C(20)-H(201)	1.087	0.630	0.081	4.1
C(20)-H(202)	1.198	0.622	0.166	5.9
C(4)-H(4)	0.737	0.536	0.272	3.6
C(14)-H(14)	0.541	0.263	0.209	7.3
C(6)-H(61)	0.375	0.443	0.249	3.2
C(6)-H(62)	0.382	0.456	0.379	4.2
C(24)-H(241)	0.311	-0.193	-0.048	4.8
C(24)-H(242)	0.427	-0.022	-0.053	3.8
C(21)-H(211)	0.756	0.039	0.375	5.3
C(21)-H(212)	0.661	-0.115	0.378	6.3
C(21)-H(213)	0.635	-0.041	0.444	6.8
C(22)-H(221)	0.595	0.525	0.451	3.3
C(22)-H(222)	0.712	0.405	0.414	3.1
C(22)-#(223)	0.582	0.302	0.465	4.0

Tabelle 3. (Fortsetzung)

Strukturfaktoren der Bijvoet-Paare

Index	I(hk1) ≥ I(hk1)	Fc(hkl)	Fc (hk1)
111	>	187	160
114	<	182	194
215	>	159	140
510	<	138	149
113	٢	256	270
312	>	190	173
417	>	66	60
221	د	191	203
322	<	182	191
522	>	119	111
1 2 3	>	139	130
1 2 7	>	98	89
128	<	63	73
4 2 2	<	159	168
528	<	72	78

zugeordnet werden können. Da ferner das Signal ($\delta =$ 7.25) des aromatischen Wasserstoffs 4-H im NMR-Spektrum wegen des anisotropen Effekts des einsamen Elektronenpaars des Stickstoffatoms nach noch niedrigerem Feld als die Resonanzsignale der übrigen aromatischen Wasserstoffe verschoben ist, sollte die N-Methylgruppe eine axiale Stellung einnehmen.7 Dieser Befund steht im Einklang mit den Resultaten der Röntgenstrukturanalyse. Da der B-Ring, wie oben erwähnt, eine Halbsessel-Konformation besitzt, kann die N-Methylgruppe wegen der sterischen Behinderung keine äquatoriale Stellung einnehmen. Obwohl eine 1,3-diaxiale Beziehung zwischen der N-Methylgruppe und der angularen Methylgruppe C-13 besteht, nimmt die N-Methylgruppe trotzdem eine axiale Stellung ein. Da die Ergebnisse aus IRund NMR-Spektren von 1 den Resultaten der Röntgenstrukturanalyse entsprechen, besitzt 1 sowohl in Lösung als auch im Kristall die gleiche Konformation. Vergleicht man die IR- und NMR-Spektren des freien (+)-14-Epicorynolins mit denen von 1, so folgt, dass der Naturstoff eine ähnliche Konformation einnehmen könnte.

Tabelle 4. Vergleich der Intensitäten I(h, k, l) und I(h, k, l) mit den Tabelle 5. Abweichungen der Atome von der Kleinste-Quadrate-Rhans /in 1

Ring A									
Atom	Abweichung	Atom	Abweichung						
*C7	0.011	C6	0.095						
*C8	-0.012	C13	-0.129						
*C9	0.004	C14	0.307						
*C10	0.003	N5	-0.260						
*C17	-0.004	C22	-1.769						
*C18	-0.003	C21	-1.653						
01	-0.043	C 11	0.701						
02	-0.013	C12	0.657						
C19	-0.211	C16	0.294						

Ring D										
weichung	Atom	Abweichung								
.018	C12	-0.037								
.024	C14	0.157								
.014	C11	0.157								
.002	C13	-0.429								
.005	N5	-0.159								
.007	C21	-2.020								
.016	C22	-1.627								
.026	C6	0.338								
.150	C17	-0.153								
	Rin weichung 0.018 0.024 0.002 0.005 0.005 0.007 0.016 0.026 0.150	Ring D weichung Atom 0.018 C12 0.024 C14 0.014 C11 0.002 C13 0.005 N5 0.007 C21 0.016 C22 0.026 C6 0.150 C17								

*Die Atome wurden in die Rechnung der Kleinste-Quadrate-Ebene miteinbezogen.

Kristallstruktur

Die Projektion der Kristallstruktur entlang der c-Achse ist in Abb. 5 dargestellt. Die Molekülanordnung in diesem Kristall ist als eine zur ab-Ebene parallele und doppelschichtige Struktur beschrieben, in der die benachbarten Moleküle durch Van der Waals-Wechsel-

Abb. 3. Bindungswinkel (Grad) in 1.

Ring B

Abb. 4. Konformationen der Ringe B und C im Kristall von 1.

Abb. 5. Packungsdiagramm von 1.

wirkungen miteinander verknüpft und gestapelt werden. Man findet in der Kristallstruktur weder Wasserstoffbrückenbindungen noch verkürzte Abstände.

LITERATUR

¹N. Takao, H.-W. Bersch und S. Takao, Chem. Pharm. Bull. (Tokyo), 21, 1096 (1973).

2G. Snatzke, J. Hrbek, Jr. Hruban, A. Horeau and F. Santavý, Tetrahedron, 26, 5013 (1970).

³N. Takao, H.-W. Bersch und S. Takao, Chem. Pharm. Bull. (Tokyo), 19, 259 (1971).

⁴N. Takao, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara und A. Wakahara, Tetrahedron Letters 805 (1974).

- ⁵T. Kametani, T. Honda, M. Ihara, H. Shimanouchi and Y. Sasada, J. Chem. Soc. Perkin II, 1605 (1973).
- "Über die Konfiguration und Konformation in Lösung wird in einer anderen Arbeit berichtet werden.
- ⁷S. Yamaguchi, S. Okuda and N. Nakagawa, Chem. Pharm. Bull. (Tokyo), 11, 1455 (1963); I. Ninomiya, T. Naito, T. Kiguchi and
- T. Mori, J. Chem. Soc. Perkin I, 1696 (1973).